Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.576
Filtrar
2.
Nature ; 622(7984): 767-774, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37794191

RESUMO

Since taking flight, insects have undergone repeated evolutionary transitions between two seemingly distinct flight modes1-3. Some insects neurally activate their muscles synchronously with each wingstroke. However, many insects have achieved wingbeat frequencies beyond the speed limit of typical neuromuscular systems by evolving flight muscles that are asynchronous with neural activation and activate in response to mechanical stretch2-8. These modes reflect the two fundamental ways of generating rhythmic movement: time-periodic forcing versus emergent oscillations from self-excitation8-10. How repeated evolutionary transitions have occurred and what governs the switching between these distinct modes remain unknown. Here we find that, despite widespread asynchronous actuation in insects across the phylogeny3,6, asynchrony probably evolved only once at the order level, with many reversions to the ancestral, synchronous mode. A synchronous moth species, evolved from an asynchronous ancestor, still preserves the stretch-activated muscle physiology. Numerical and robophysical analyses of a unified biophysical framework reveal that rather than a dichotomy, these two modes are two regimes of the same dynamics. Insects can transition between flight modes across a bridge in physiological parameter space. Finally, we integrate these two actuation modes into an insect-scale robot11-13 that enables transitions between modes and unlocks a new self-excited wingstroke strategy for engineered flight. Together, this framework accounts for repeated transitions in insect flight evolution and shows how flight modes can flip with changes in physiological parameters.


Assuntos
Evolução Biológica , Fenômenos Biofísicos , Voo Animal , Insetos , Músculos , Animais , Fenômenos Biofísicos/fisiologia , Voo Animal/fisiologia , Insetos/classificação , Insetos/fisiologia , Músculos/inervação , Músculos/fisiologia , Filogenia , Asas de Animais/inervação , Asas de Animais/fisiologia
3.
BMC Genomics ; 24(1): 117, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927511

RESUMO

BACKGROUND: Generating the most contiguous, accurate genome assemblies given available sequencing technologies is a long-standing challenge in genome science. With the rise of long-read sequencing, assembly challenges have shifted from merely increasing contiguity to correctly assembling complex, repetitive regions of interest, ideally in a phased manner. At present, researchers largely choose between two types of long read data: longer, but less accurate sequences, or highly accurate, but shorter reads (i.e., >Q20 or 99% accurate). To better understand how these types of long-read data as well as scale of data (i.e., mean length and sequencing depth) influence genome assembly outcomes, we compared genome assemblies for a caddisfly, Hesperophylax magnus, generated with longer, but less accurate, Oxford Nanopore (ONT) R9.4.1 and highly accurate PacBio HiFi (HiFi) data. Next, we expanded this comparison to consider the influence of highly accurate long-read sequence data on genome assemblies across 6750 plant and animal genomes. For this broader comparison, we used HiFi data as a surrogate for highly accurate long-reads broadly as we could identify when they were used from GenBank metadata. RESULTS: HiFi reads outperformed ONT reads in all assembly metrics tested for the caddisfly data set and allowed for accurate assembly of the repetitive ~ 20 Kb H-fibroin gene. Across plants and animals, genome assemblies that incorporated HiFi reads were also more contiguous. For plants, the average HiFi assembly was 501% more contiguous (mean contig N50 = 20.5 Mb) than those generated with any other long-read data (mean contig N50 = 4.1 Mb). For animals, HiFi assemblies were 226% more contiguous (mean contig N50 = 20.9 Mb) versus other long-read assemblies (mean contig N50 = 9.3 Mb). In plants, we also found limited evidence that HiFi may offer a unique solution for overcoming genomic complexity that scales with assembly size. CONCLUSIONS: Highly accurate long-reads generated with HiFi or analogous technologies represent a key tool for maximizing genome assembly quality for a wide swath of plants and animals. This finding is particularly important when resources only allow for one type of sequencing data to be generated. Ultimately, to realize the promise of biodiversity genomics, we call for greater uptake of highly accurate long-reads in future studies.


Assuntos
Biodiversidade , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Genômica/métodos , Genômica/normas , Genômica/tendências , Insetos/classificação , Insetos/genética , Fibroínas/genética , Mapeamento de Sequências Contíguas , Genoma de Inseto/genética , Animais , Bases de Dados de Ácidos Nucleicos , Reprodutibilidade dos Testes , Metanálise como Assunto , Conjuntos de Dados como Assunto , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Sequenciamento de Nucleotídeos em Larga Escala/tendências , Plantas/genética , Genoma de Planta/genética
4.
Zootaxa ; 5330(4): 561-585, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-38221121

RESUMO

The checklist of earwigs occurring in South India,viz., Andhra Pradesh, Karnataka, Kerala, Tamil Nadu and Telangana, was compiled from published literature and augmented by collecting efforts between 2020 and 2022. A total of 102 species belonging to 45 genera and eight families are listed herein from South India. Specimens representing 29 species were collected from the South Indian states during 20202022 surveys, of whichDendroiketes corticinusandChaetospania anderssonirepresent two new records for India. The highest number of species was recorded from Tamil Nadu (79 species), followed by Karnataka (39 species) and Kerala (26 species), while the least number were from Telangana (6) and Andhra Pradesh (4 species). The records indicated that the South Indian states, which cover a significant portion of the Western Ghats of India (Karnataka, Kerala and Tamil Nadu), are more diverse than previously indicated.


Assuntos
Insetos , Animais , Índia , Insetos/classificação
5.
J Morphol ; 283(8): 1106-1119, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35848485

RESUMO

The thoracic musculature of the insect order Psocodea has been examined in only a few species of a single suborder to date. In the present study, we examined the thoracic musculature of species selected from all three suborders of Psocodea to elucidate the ground plan of the order and to examine the phylogenetic utility of the character system. The sister-group relationship between the suborders Troctomorpha and Psocomorpha received support from two novel nonhomoplasious synapomorphies, although the support from other morphological characters for this relationship is ambiguous. The sister-group relationship between the infraorders Epipsocetae and Psocetae also received support from one nonhomoplasious synapomorphy, although no other morphological characters supporting this relationship have been identified to date. The present examination revealed the potential of thoracic muscle characters for estimating deep phylogeny, possibly including interordinal relationships.


Assuntos
Insetos , Filogenia , Animais , Insetos/anatomia & histologia , Insetos/classificação , Músculos
6.
Nature ; 607(7920): 721-725, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859181

RESUMO

Mounting concern over the global decline of pollinators has fuelled calls for investigating their role in maintaining plant diversity1,2. Theory predicts that competition for pollinators can stabilize interactions between plant species by providing opportunities for niche differentiation3, while at the same time can drive competitive imbalances that favour exclusion4. Here we empirically tested these contrasting effects by manipulating competition for pollinators in a way that predicts its long-term implications for plant coexistence. We subjected annual plant individuals situated across experimentally imposed gradients in neighbour density to either ambient insect pollination or a pollen supplementation treatment alleviating competition for pollinators. The vital rates of these individuals informed plant population dynamic models predicting the key theoretical metrics of species coexistence. Competition for pollinators generally destabilized the interactions between plant species, reducing the proportion of pairs expected to coexist. Interactions with pollinators also influenced the competitive imbalances between plant species, effects that are expected to strengthen with pollinator decline, potentially disrupting plant coexistence. Indeed, results from an experiment simulating pollinator decline showed that plant species experiencing greater reductions in floral visitation also suffered greater declines in population growth rate. Our results reveal that competition for pollinators may weaken plant coexistence by destabilizing interactions and contributing to competitive imbalances, information critical for interpreting the impacts of pollinator decline.


Assuntos
Insetos , Fenômenos Fisiológicos Vegetais , Plantas , Polinização , Animais , Biodiversidade , Comportamento Competitivo , Flores/fisiologia , Insetos/classificação , Insetos/fisiologia , Plantas/classificação , Pólen , Dinâmica Populacional
7.
Sci Rep ; 12(1): 1734, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110598

RESUMO

Tropical forests are among the most biodiverse biomes on the planet. Nevertheless, quantifying the abundance and species richness within megadiverse groups is a significant challenge. We designed a study to address this challenge by documenting the variability of the insect fauna across a vertical canopy gradient in a Central Amazonian tropical forest. Insects were sampled over two weeks using 6-m Gressitt-style Malaise traps set at five heights (0 m-32 m-8 m intervals) on a metal tower in a tropical forest north of Manaus, Brazil. The traps contained 37,778 specimens of 18 orders of insects. Using simulation approaches and nonparametric analyses, we interpreted the abundance and richness of insects along this gradient. Diptera, Hymenoptera, and Coleoptera had their greatest abundance at the ground level, whereas Lepidoptera and Hemiptera were more abundant in the upper levels of the canopy. We identified species of 38 of the 56 families of Diptera, finding that 527 out of 856 species (61.6%) were not sampled at the ground level. Mycetophilidae, Tipulidae, and Phoridae were significantly more diverse and/or abundant at the ground level, while Tachinidae, Dolichopodidae, and Lauxaniidae were more diverse or abundant at upper levels. Our study suggests the need for a careful discussion of strategies of tropical forest conservation based on a much more complete understanding of the three-dimensional distribution of its insect diversity.


Assuntos
Ecossistema , Insetos/classificação , Floresta Úmida , Animais , Biodiversidade , Brasil , Conservação dos Recursos Naturais , Clima Tropical
8.
Nucleic Acids Res ; 50(D1): D898-D911, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718728

RESUMO

The Eukaryotic Pathogen, Vector and Host Informatics Resource (VEuPathDB, https://veupathdb.org) represents the 2019 merger of VectorBase with the EuPathDB projects. As a Bioinformatics Resource Center funded by the National Institutes of Health, with additional support from the Welllcome Trust, VEuPathDB supports >500 organisms comprising invertebrate vectors, eukaryotic pathogens (protists and fungi) and relevant free-living or non-pathogenic species or hosts. Designed to empower researchers with access to Omics data and bioinformatic analyses, VEuPathDB projects integrate >1700 pre-analysed datasets (and associated metadata) with advanced search capabilities, visualizations, and analysis tools in a graphic interface. Diverse data types are analysed with standardized workflows including an in-house OrthoMCL algorithm for predicting orthology. Comparisons are easily made across datasets, data types and organisms in this unique data mining platform. A new site-wide search facilitates access for both experienced and novice users. Upgraded infrastructure and workflows support numerous updates to the web interface, tools, searches and strategies, and Galaxy workspace where users can privately analyse their own data. Forthcoming upgrades include cloud-ready application architecture, expanded support for the Galaxy workspace, tools for interrogating host-pathogen interactions, and improved interactions with affiliated databases (ClinEpiDB, MicrobiomeDB) and other scientific resources, and increased interoperability with the Bacterial & Viral BRC.


Assuntos
Bases de Dados Factuais , Vetores de Doenças/classificação , Interações Hospedeiro-Patógeno/genética , Fenótipo , Interface Usuário-Computador , Animais , Apicomplexa/classificação , Apicomplexa/genética , Apicomplexa/patogenicidade , Bactérias/classificação , Bactérias/genética , Bactérias/patogenicidade , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/patologia , Doenças Transmissíveis/transmissão , Biologia Computacional/métodos , Mineração de Dados/métodos , Diplomonadida/classificação , Diplomonadida/genética , Diplomonadida/patogenicidade , Fungos/classificação , Fungos/genética , Fungos/patogenicidade , Humanos , Insetos/classificação , Insetos/genética , Insetos/patogenicidade , Internet , Nematoides/classificação , Nematoides/genética , Nematoides/patogenicidade , Filogenia , Virulência , Fluxo de Trabalho
9.
Nucleic Acids Res ; 50(D1): D837-D847, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34788826

RESUMO

Since 2005, the Pathogen-Host Interactions Database (PHI-base) has manually curated experimentally verified pathogenicity, virulence and effector genes from fungal, bacterial and protist pathogens, which infect animal, plant, fish, insect and/or fungal hosts. PHI-base (www.phi-base.org) is devoted to the identification and presentation of phenotype information on pathogenicity and effector genes and their host interactions. Specific gene alterations that did not alter the in host interaction phenotype are also presented. PHI-base is invaluable for comparative analyses and for the discovery of candidate targets in medically and agronomically important species for intervention. Version 4.12 (September 2021) contains 4387 references, and provides information on 8411 genes from 279 pathogens, tested on 228 hosts in 18, 190 interactions. This provides a 24% increase in gene content since Version 4.8 (September 2019). Bacterial and fungal pathogens represent the majority of the interaction data, with a 54:46 split of entries, whilst protists, protozoa, nematodes and insects represent 3.6% of entries. Host species consist of approximately 54% plants and 46% others of medical, veterinary and/or environmental importance. PHI-base data is disseminated to UniProtKB, FungiDB and Ensembl Genomes. PHI-base will migrate to a new gene-centric version (version 5.0) in early 2022. This major development is briefly described.


Assuntos
Bases de Dados Factuais , Interações Hospedeiro-Patógeno/genética , Fenótipo , Interface Usuário-Computador , Animais , Apicomplexa/classificação , Apicomplexa/genética , Apicomplexa/patogenicidade , Bactérias/classificação , Bactérias/genética , Bactérias/patogenicidade , Diplomonadida/classificação , Diplomonadida/genética , Diplomonadida/patogenicidade , Fungos/classificação , Fungos/genética , Fungos/patogenicidade , Insetos/classificação , Insetos/genética , Insetos/patogenicidade , Internet , Nematoides/classificação , Nematoides/genética , Nematoides/patogenicidade , Filogenia , Plantas/microbiologia , Plantas/parasitologia , Virulência
10.
Nucleic Acids Res ; 50(D1): D1040-D1045, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34792158

RESUMO

Insects are the largest group of animals on the planet and have a huge impact on human life by providing resources, transmitting diseases, and damaging agricultural crop production. Recently, a large amount of insect genome and gene data has been generated. A comprehensive database is highly desirable for managing, sharing, and mining these resources. Here, we present an updated database, InsectBase 2.0 (http://v2.insect-genome.com/), covering 815 insect genomes, 25 805 transcriptomes and >16 million genes, including 15 045 111 coding sequences, 3 436 022 3'UTRs, 4 345 664 5'UTRs, 112 162 miRNAs and 1 293 430 lncRNAs. In addition, we used an in-house standard pipeline to annotate 1 434 653 genes belonging to 164 gene families; 215 986 potential horizontally transferred genes; and 419 KEGG pathways. Web services such as BLAST, JBrowse2 and Synteny Viewer are provided for searching and visualization. InsectBase 2.0 serves as a valuable platform for entomologists and researchers in the related communities of animal evolution and invertebrate comparative genomics.


Assuntos
Bases de Dados Genéticas , Genoma de Inseto/genética , Insetos/genética , Software , Animais , Insetos/classificação , MicroRNAs/genética , Sintenia/genética
11.
Pap. avulsos zool ; 62: e202262010, 2022. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1363651

RESUMO

The three new species of Brazilian Euplocania are described and illustrated, two species belong in the amabilis species group (Euplocania maraca sp. nov. and Euplocania ufrr sp. nov.) and one species belong in the marginata species group (Euplocania macuxi sp. nov.). Information on species groups, species subgroups and distribution by Brazilian states is included for known species of Euplocania.(AU)


Assuntos
Animais , Biodiversidade , Insetos/classificação
12.
Braz. j. biol ; 82: 1-15, 2022. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468481

RESUMO

Several records of associated fauna, including parasitoids, inquilines, predators, and successors, have been reported by insect gall inventories in Brazilian restingas. Although most guilds are well established, inquilines have frequently been misinterpreted. In this paper, the inquilinous fauna of insect galls is revised based on five criteria: food habit; coexistence with the inducer; modification of gall tissues or production of new tissues; phylogenetic relationship with the inducer; and mobility. Gall inventories dated from 1988 to 2019 were examined, totaling 16 publications, eight of them with inquiline records. This guild was reported in 53 gall morphotypes in 44 plant species and four morphospecies distributed among 36 genera of 24 host families for a total of 65 records. Most inquilines were repositioned into the cecidophage guild and others into the kleptoparasite guild, resulting in a large reduction in the frequency of inquilines (from 65 to five records), and in first reports of cecidophages and kleptoparasites, with 46 and 13 records, respectively. Cecidophage was the most diverse guild with insects of five orders (Diptera, Coleoptera, Lepidoptera, Hemiptera, and Thysanoptera) while kleptoparasites were represented only by two orders (Diptera and Hymenoptera) and inquiline solely by Hymenoptera. Other results indicate that Leptothorax sp. (Formicidae) could be a successor and not an inquiline.


Vários registros de fauna associada, incluindo parasitoides, inquilinos, predadores e sucessores são encontrados em inventários de galhas de insetos em restingas brasileiras. Embora a maioria das guildas esteja bem estabelecida, os inquilinos são frequentemente interpretados de forma equivocada. Nesse trabalho, a fauna inquilina de galhas de insetos é revisada com base em cinco critérios: hábito alimentar, coexistência com o indutor, modificação dos tecidos da galha ou produção de novos tecidos, relação filogenética com o indutor e mobilidade. Inventários de galhas publicados entre 1988 e 2019 foram examinados, totalizando 16 artigos, oito deles com registro de inquilinos. Essa guilda foi assinalada em 53 morfotipos de galhas em 44 espécies de plantas e quatro morfoespécies distribuídas em 36 gêneros de 24 famílias vegetais, totalizando 65 registros. A maioria dos inquilinos foi reposicionada na guilda dos cecidófagos e outros na guilda dos cleptoparasitas, resultando em uma grande redução da frequência dos inquilinos (de 65 para cinco registros), e na primeira ocorrência de cecidófagos e cleptoparasitas, com 46 e 13 registros, respectivamente. A guilda dos cecidófagos foi a mais diversa, com insetos de cinco ordens (Diptera, Coleoptera, Lepidoptera, Hemiptera e Thysanoptera), enquanto que os cleptoparasitas foram representados por apenas duas ordens (Diptera e Hymenoptera) e os inquilinos somente por Hymenoptera. Outros resultados indicam que Leptothorax sp. (Formicidae) pode ser um sucessor e não um inquilino.


Assuntos
Animais , Insetos/classificação , Tumores de Planta/microbiologia
13.
Sci Rep ; 11(1): 24020, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34912013

RESUMO

The region of the Western Carpathians is, among other aspects, very important for survival and diversity of European freshwater fauna due to the presence of a large number of (sub)mountain springs and streams. However, these ecologically and faunistically diversified habitats are still understudied in the context of genetic diversity and population structure of their inhabitants. This study focuses on genetic diversity and distribution patterns of the caddisfly Rhyacophila tristis, common and widespread representative of mountain freshwater fauna. Analysis of the COI mitochondrial marker revealed presence of the western and eastern lineages, with samples from both lineages being grouped in BOLD (Barcode of Life Data System) into separate BINs (Barcode Index Numbers). Our data indicates that eastern lineage (BIN_E) is more closely related to the Balkan populations than to co-occurring western lineage (BIN_W), and that the contact zone of the lineages passes through the W Carpathians. The study revealed phylogeographic and demographic differences between lineages, supporting hypothesis of their evolutionary independence and specific ecological preferences. The obtained genetic data of the R. tristis population from W Carpathians improved our knowledge about population genetics of this aquatic species and can contribute to understanding the state and evolution of biodiversity of freshwater ecosystems in Europe.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Ecossistema , Insetos/classificação , Insetos/genética , Animais , DNA Mitocondrial , Europa (Continente) , Água Doce , Variação Genética , Genética Populacional , Filogenia , Filogeografia
14.
Genes (Basel) ; 12(12)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34946934

RESUMO

Mitochondrial genomes of three stoneflies, e.g., Claassenia magna Wu, 1948, Claassenia sp. 2 and Claassenia xucheni Chen, 2019 were sequenced in this study with 15,774, 15,777 and 15,746 bp in length, respectively. Each mitogenome contained 37 genes including 22 tRNAs, two ribosomal RNAs, 13 protein-coding genes (PCGs), and a noncoding control region (CR). In general, standard ATN start and TAN termination codons were evident in the PCGs. Although the dihydrouridine arm was absent in trnSer, the remaining 21 tRNAs displayed the characteristic cloverleaf secondary structure. Stem-loop structures were identified in the CRs of all three mitogenomes, but tandem repeats were only apparent in Claassenia xucheni. The mitogenomes of three Claassenia species were analyzed and compared with mitogenomes in 21 other stoneflies from the Perlidae and three Euholognatha species (Rhopalopsole bulbifera, Capnia zijinshana and Amphinemura longispina) as outgroups. Phylogenetic analyses using maximum likelihood and Bayesian inference. Phylogenetic analysis supported that Claassenia was recovered as the sister group of other Perlinae and Claassenia+Perlinae emerged from the paraphyletic Acroneuriinae. The final results supported that Claassenia was classified into subfamily Perlinae and proposed Claassenia represent a transitional group of the subfamilies Acroneuriinae and Perlinae. This study provided new molecular evidence for exploring the debatable taxonomic position of the genus Claassenia in Perlidae.


Assuntos
Genoma Mitocondrial/genética , Insetos/classificação , Insetos/genética , Animais , Sequência de Bases/genética , Conformação de Ácido Nucleico , Filogenia , RNA Ribossômico/genética , RNA de Transferência/genética
15.
Nat Commun ; 12(1): 5946, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642336

RESUMO

Recently reported insect declines have raised both political and social concern. Although the declines have been attributed to land use and climate change, supporting evidence suffers from low taxonomic resolution, short time series, a focus on local scales, and the collinearity of the identified drivers. In this study, we conducted a systematic assessment of insect populations in southern Germany, which showed that differences in insect biomass and richness are highly context dependent. We found the largest difference in biomass between semi-natural and urban environments (-42%), whereas differences in total richness (-29%) and the richness of threatened species (-56%) were largest from semi-natural to agricultural environments. These results point to urbanization and agriculture as major drivers of decline. We also found that richness and biomass increase monotonously with increasing temperature, independent of habitat. The contrasting patterns of insect biomass and richness question the use of these indicators as mutual surrogates. Our study provides support for the implementation of more comprehensive measures aimed at habitat restoration in order to halt insect declines.


Assuntos
Agricultura/estatística & dados numéricos , Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção/tendências , Insetos/fisiologia , Urbanização/tendências , Animais , Biodiversidade , Biomassa , Mudança Climática , Conservação dos Recursos Naturais/legislação & jurisprudência , Ecossistema , Alemanha , Insetos/classificação
16.
Cladistics ; 37(5): 559-570, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34570939

RESUMO

We analyzed 769 242 occurrence records for 115 424 species of terrestrial arthropods, from three biodiversity repositories (Global Biodiversity Information Facility (GBIF), Natural History Museum, London, and "Sistema de Informação Distribuído para Coleções Biológicas" (SpeciesLink)), to test the use of global-scale data points for quantitative assessments of areas of endemism. The data include Insecta (105,941 species), Arachnida (7984 species), Myriapoda (1229) and terrestrial crustaceans (270 Branchiopoda). The species were assigned to 14 543 higher taxonomic groups because such groups often characterize larger areas of endemism. Putative areas of endemism were visualized as sets of cells displaying unique groups of species without the assumption of hierarchical relationships. Yet, the use of 10° grid cells recovered many large areas broadly corresponding to biogeographic Regions (Nearctic, Neotropical, Panamanian, Palaearctic, Afrotropical, Australian, Oceanian and Oriental) albeit with the limits poorly defined. An analysis of 5° grids resulted in 306 sets included in the different biogeographic Realms: Afrotropical, Australian, Madagascan, Nearctic, Neotropical, Oceanian, Oriental, Palaearctic, Saharo-Arabian and Sino-Japanese. The Panamanian Realm comprises 89 partly overlapping sets, crossing the Nearctic and Neotropical boundaries. A total of 7338 species of Insecta were endemic to some areas (Sino-Japanese, Afrotropical, Panamanian, Palaearctic, among others), followed by Arachnida (412 spp) and 105 species in other clades ranked as "classes". Six sets were supported only by genera, except for Panamanian sets that were supported by genera and families. Many of the species in the dataset are included in IUCN red lists, but probably most of those have distributions more restricted than global areas of endemism; only 102 appear as endemic to some area (Neartic, Madagascan, Panamanian, Afrotropical, among others). The results show that data from global databases can be used to identify areas of endemism on a worldwide basis but-owing to their incompleteness-only at a relatively coarse level. At the level of resolution currently allowed by such databases, such global studies are only complementary to studies where areas are determined subjectively by systematists (instead of actual point records), or studies using point records in datasets for specific taxonomic groups curated and compiled by specialists.


Assuntos
Artrópodes , Biodiversidade , Animais , Aracnídeos , Artrópodes/classificação , Geografia , Insetos/classificação , Londres
17.
J Comput Biol ; 28(10): 961-974, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34491118

RESUMO

We extend the popular Jukes-Cantor evolution model and calculate the probability of an orthologous nucleotide sequence set [a reference sequence (B1) stays with the other sequences (B-1)], where the sequence evolution [from a last common ancestral sequence (ɑ)] follows the (prospective) Poisson process with the overall event rate λ prorated among mutation types (nucleotide/codon substitution, insertion, and deletion) and sites along each sequence. The corresponding retrospective process (reversing the prospective process) facilitates developing algorithms to calculate the marginal probability [Pr(B1)] (Monte Carlo integration) and sample ɑ (given B1). We calculate probability Pr(B-1|ɑ) based on the identified events (during "ɑ→B-1") from pairwise sequence alignment to implement Pr(B-1|B1) calculation (Monte Carlo integration). Event queue sampling and probability magnifiers are used to improve the computational efficiency when the number of events is large. We finally test our procedure on both simulated and recently studied hexapod transcriptome data (Brandt et al.), where each asexual lineage pairs with its closest related sexual lineage. Rate estimates (for Phasmatodea and Zygentoma) and model comparison indicate that the asexual lineages likely mutate several times faster than their sexual relatives.


Assuntos
Biologia Computacional/métodos , Insetos/classificação , Algoritmos , Animais , Evolução Molecular , Insetos/genética , Modelos Genéticos , Método de Monte Carlo , Neópteros/genética , Filogenia , Distribuição de Poisson , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
18.
Tissue Cell ; 73: 101648, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34537592

RESUMO

We have examined published transmission electron microscopy (TEM). photomicrographs of chromatin condensation patterning in developing sperm nuclei from five species of entognathous hexapods within the Classes Protura, Collembola, Diplura and five species of ancestral wingless insects in the Orders Archaeognatha and Zygentoma as well as in fifteen species of the winged insects. Each species reproduces by internal fertilization. Spatially quantitative analysis indicates that spermiogenic chromatin condensation patterning in several of these species may be due to spinodal decomposition (SD) or to microemulsion inversion (chromatin-in-nucleoplasm → nucleoplasm-in-chromatin), also known as nucleation (Nc). These are two different dynamic mechanisms of liquid-liquid phase separation (LLPS). They might either occur independently or co-exist during the chromatin condensation associated with insect spermiogenesis. For example, the chromatin condensation pattern such as that observed in transverse sections of developing sperm nuclei from the wingless insect Anurida maritima (Collembola) is: granules → fibers → lamellae (SD) → nucleation (Nc) → condensed nuclei. Similar transitions are also observed in other more recently evolved species within the Class Insecta. From the limited but comprehensive sample of entognathus and ectognathus hexapods analyzed here, it appears that LLPS of sperm chromatin during spermiogenesis has occurred quite pervasively within the subphylum Hexapoda, including insects.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Insetos/metabolismo , Espermatogênese , Animais , Núcleo Celular/ultraestrutura , Cromatina/ultraestrutura , Insetos/classificação , Insetos/ultraestrutura , Masculino , Filogenia , Espermátides/metabolismo , Espermátides/ultraestrutura
19.
Genes (Basel) ; 12(8)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34440312

RESUMO

The rapid and accurate identification of invertebrate pests detected at the border is a challenging task. Current diagnostic methods used at the borders are mainly based on time consuming visual and microscopic examinations. Here, we demonstrate a rapid in-house workflow for DNA extraction, PCR amplification of the barcode region of the mitochondrial cytochrome oxidase subunit I (COI) gene and Oxford Nanopore Technologies (ONT) MinION sequencing of amplified products multiplexed after barcoding on ONT Flongle flow cells. A side-by-side comparison was conducted of DNA barcode sequencing-based identification and morphological identification of both large (>0.5 mm in length) and small (<0.5 mm in length) invertebrate specimens intercepted at the Australian border. DNA barcode sequencing results supported the morphological identification in most cases and enabled immature stages of invertebrates and their eggs to be identified more confidently. Results also showed that sequencing the COI barcode region using the ONT rapid sequencing principle is a cost-effective and field-adaptable approach for the rapid and accurate identification of invertebrate pests. Overall, the results suggest that MinION sequencing of DNA barcodes offers a complementary tool to the existing morphological diagnostic approaches and provides rapid, accurate, reliable and defendable evidence for identifying invertebrate pests at the border.


Assuntos
Análise Custo-Benefício , Código de Barras de DNA Taxonômico/métodos , Insetos/classificação , Invertebrados/classificação , Análise de Sequência de DNA/métodos , Animais , Insetos/genética , Invertebrados/genética
20.
Commun Biol ; 4(1): 932, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341467

RESUMO

The insect order Phasmatodea is known for large slender insects masquerading as twigs or bark. In contrast to these so-called stick insects, the subordinated clade of leaf insects (Phylliidae) are dorso-ventrally flattened and therefore resemble leaves in a unique way. Here we show that the origin of extant leaf insects lies in the Australasian/Pacific region with subsequent dispersal westwards to mainland Asia and colonisation of most Southeast Asian landmasses. We further hypothesise that the clade originated in the Early Eocene after the emergence of angiosperm-dominated rainforests. The genus Phyllium to which most of the ~100 described species pertain is recovered as paraphyletic and its three non-nominate subgenera are recovered as distinct, monophyletic groups and are consequently elevated to genus rank. This first phylogeny covering all major phylliid groups provides the basis for future studies on their taxonomy and a framework to unveil more of their cryptic and underestimated diversity.


Assuntos
Distribuição Animal , Evolução Biológica , Insetos/classificação , Filogenia , Animais , Australásia , Insetos/fisiologia , Magnoliopsida , Filogeografia , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...